Plasmodium falciparum Maf1 Confers Survival upon Amino Acid Starvation
نویسندگان
چکیده
The target of rapamycin complex 1 (TORC1) pathway is a highly conserved signaling pathway across eukaryotes that integrates nutrient and stress signals to regulate the cellular growth rate and the transition into and maintenance of dormancy. The majority of the pathway's components, including the central TOR kinase, have been lost in the apicomplexan lineage, and it is unknown how these organisms detect and respond to nutrient starvation in its absence. Plasmodium falciparum encodes a putative ortholog of the RNA polymerase (Pol) III repressor Maf1, which has been demonstrated to modulate Pol III transcription in a TOR-dependent manner in a number of organisms. Here, we investigate the role of P. falciparum Maf1 (PfMaf1) in regulating RNA Pol III expression under conditions of nutrient starvation and other stresses. Using a transposon insertion mutant with an altered Maf1 expression profile, we demonstrated that proper Maf1 expression is necessary for survival of the dormancy-like state induced by prolonged amino acid starvation and is needed for full recovery from other stresses that slow or stall the parasite cell cycle. This Maf1 mutant is defective in the downregulation of pre-tRNA synthesis under nutrient-limiting conditions, indicating that the function of Maf1 as a stress-responsive regulator of structural RNA transcription is conserved in P. falciparum Recent work has demonstrated that parasites carrying artemisinin-resistant K13 alleles display an enhanced ability to recover from drug-induced growth retardation. We show that one such artemisinin-resistant line displays greater regulation of pre-tRNA expression and higher survival upon prolonged amino acid starvation, suggesting that overlapping, PfMaf1-associated pathways may regulate growth recovery from both artemisinin treatment and amino acid starvation.IMPORTANCE Eukaryote organisms sense changes in their environment and integrate this information through signaling pathways to activate response programs to ensure survival. The TOR pathway is a well-studied signaling pathway found throughout eukaryotes that is known to integrate a variety of signals to regulate organismal growth in response to starvation and other stresses. The human malaria parasite Plasmodium falciparum appears to have lost the TOR pathway over the course of evolution, and it is unclear how the parasite modulates its growth in response to starvation and drug treatment. Here, we show that Maf1, a protein regulated by TOR in other eukaryotes, plays an important role in maintaining the parasite's viability in the face of starvation and other forms of stress. This suggests that PfMaf1 is a component of a yet-to-be-described nutrient and stress response pathway.
منابع مشابه
Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state.
The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. fa...
متن کاملPlasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems.
Degradation of host hemoglobin by the human malaria parasite Plasmodium falciparum is a massive metabolic process. What role this degradation plays and whether it is essential for parasite survival have not been established, nor have the roles of the various degradative enzymes been clearly defined. We report that P. falciparum can grow in medium containing a single amino acid (isoleucine, the ...
متن کاملFeatures of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein.
The ability to undergo apoptosis, previously thought to be exclusive to multicellular organisms, has been demonstrated in unicellular parasites. On the basis of an observation that Plasmodium "crisis forms" were seen in vitro after cultivation in media containing an antimalarial drug, we attempted to determine whether Plasmodium falciparum has the ability to undergo apoptosis. By use of either ...
متن کاملStructural Characterization of Acidic M17 Leucine Aminopeptidases from the TriTryps and Evaluation of Their Role in Nutrient Starvation in Trypanosoma brucei
Leucine aminopeptidase (LAP) is found in all kingdoms of life and catalyzes the metal-dependent hydrolysis of the N-terminal amino acid residue of peptide or amino acyl substrates. LAPs have been shown to participate in the N-terminal processing of certain proteins in mammalian cells and in homologous recombination and transcription regulation in bacteria, while in parasites, they are involved ...
متن کاملPfs2400 can mediate antibody-dependent malaria transmission inhibition and may be the Plasmodium falciparum 11.1 gene product
Monoclonal antibodies (mAb) have been raised against Plasmodium falciparum gametocyte stage protein extracts, in an effort to identify novel parasite antigens that might mediate malaria transmission-blocking immunity. mAb 1A1 identified Pfs2400, a sexual stage-specific antigen of greater than 2 megadaltons, that is associated with the outer leaflet of the parasitophorous vacuole membrane in mat...
متن کامل